

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶): DATE: (日期): 2017-08-09

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: SK 35V390μF(φ8X20)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL		CUS	TOMER	
PREPARED (拟定)	CHECKED (审核)	APPRO (批准		SIGNATURE (签名)
李婷	刘渭清			

	SPECIFICATION					ALTER	ALTERNATION HISTORY RECORDS				
D		SK SI		T				•			
Rev.	Date	SK SI Mark		ge	Contents	Purpose	Drafter				
	Version		01				Page	1			

	MAN YUE ELECTI COMPANY LIM			CAI SPEC.	CTROLYTIC PACITOR TIFICATION CSERIES	_			SAM	XOI	N	
'at	le 1 Product Dimen	isions and	Characteristi	25					Unit	: mm		
	Safety vent for $\geq \Phi$ 6.3		$d \pm 0.0$	05	F±0.5	β	Φ D<20 : β	=0.5; ΦD≥		0		
	L ^{+2.0} ←	15 m	in → <mark>4 min</mark>		$\Phi D_{-0.5}^{+\beta}$	* lf it	is flat rubb surface.	per, there	is no bul	ge fron	n the fl	at rubber
N o.	SAMXON Part No.	WV C	$\begin{array}{c c} in & 4 & min \\ \hline \\ ap. \\ (\mu F) \end{array} Cap. \ tolerance \end{array}$	Temp. range(℃)	tan δ (120Hz, 20°C) (μA,2min)	* If it Max Ripple Current at 105°C 100KHz (mA rms)		Load lifetime (Hrs)		nension (mm) F		at rubber Sleeve

Version	01	Page	2
		0	

 Application Part Number System Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current 4.4 tan δ 	Sheet 4 5 5~10
 Part Number System Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current 4.4 tan δ 	4 5
 Construction Characteristics Rated voltage & Surge voltage Capacitance (Tolerance) Leakage current tan δ 	5
 Characteristics .1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 	
 A.1 Rated voltage & Surge voltage 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 	5~10
 4.2 Capacitance (Tolerance) 4.3 Leakage current 4.4 tan δ 	
4.3 Leakage current 4.4 tan δ	
4.4 $\tan \delta$	
4.5 Terminal strength	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Shelf life test	
4.9 Surge test	
4.10 Vibration	
4.11 Solderability test	
4.12 Resistance to solder heat	
4.13 Change of temperature 4.14 Damp heat test	
4.14 Damp heat test 4.15 Vent test	
4.16 Maximum permissible (ripple current)	
5. List of "Environment-related Substances to be Controlled ('Controlled Substances')"	11
Attachment: Application Guidelines	12~15

	Version	01		Page	3	
--	---------	----	--	------	---	--

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

1. Application

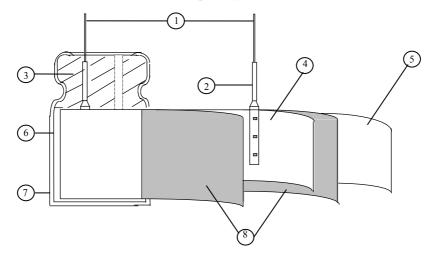
This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс Ρ EGS 1 н D11 S 0 5 м 1 TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Code Voltage (W.V.) Code Case Size Feature Code SAMXON Product Lin ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D (4) Co RR For internal use only 3 B .5 1 4 C Radial bulk 0.1 104 ± 5 J 2.5 0E (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к E,M or 0,1,2,3,4,5,9) ±10 0K 8 0.33 334 2.0mm Pitch тτ 10 1A 10 G 12.5 I 13.3 J 13.5 V 14.4 4 14.5 A 16.5 7 18.5 8 20 M 225 O 300 P 255 O 304 W 335 Q 40 R 422 4 ±15 L 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EGI м 20 1D ±20 105 3.5mm Pitch тν Sleeve Material 1 Cod 듣증 25 EGK EGE EGD 1E тс PET Р 30 11 5.0mm Pitch 2.2 225 Ν ±30 32 13 Lead Cut & Form 35 ERS 3.3 335 1V -40 w ERF Z2 N 25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 3.5 T 76 U 80 8 90 X 00 Z 40 1G СВ-Туре СВ 42 4.7 475 1**M** -20 0 А ER 50 1H ERI СЕ-Туре CE 10 106 57 1L ERD -20 +10 С 63 1J HE HE-Type 45 51 33.5 76 80 90 100 22 226 71 **1**S ER. 75 1**T** 6 -20 +40 ERE × KD-Type КD 336 ERC EFA ENP 33 80 1K 85 1R -20 +50 FD-Type FD s 47 476 90 19 ENH 100 2A 4.5 5 455 5 065 5 06 4 54 7 07 7 77 7 77 2 T2 1 11 5 1A 2 12 5 1B 3 13 3 13 5 1C 0 200 5 25 5 25 5 25 5 23 0 30 5 3A 5 35 5 5 35 -10 0 ЕН-Туре EΗ в 107 100 120 20 5.4 EAP EQP EDP 125 2B PCB Termial 227 -10 +20 220 v 150 2Z 160 2C 10 ETP EHP EUP EKP EEP sw -10 +30 330 337 Q 180 2P 11.5 200 2D Snap-in sx 12 2.5 13 3.5 477 470 12 -10 +50 215 22 т 13.L 20 2; EFF 220 2N sz 2200 228 23 -5 +10 230 EVP EGP EWR EWU EWT EWS EWF EWS EWH EWL EWB VSS Е 250 2E Lug SG 29.5 22000 229 -5 +15 275 2Т F 3 300 21 05 33000 339 -5 +20 310 2R 35 G 50 80 1L 1K 1M 1P 06 315 2F 47000 479 330 2U 0 +20 R Т5 350 2V 100000 10T Screw 360 2X 0 +30 0 т6 VNS VKS VKM VRL VRL 375 2Q 150000 15T 40 10 1R 1E 1S 1F 1T 1U 1V 0 +50 385 2Y I. D5 2G 400 220000 22T +5 +15 420 2M z D6 VZS 450 2W 330000 ззт +5 +20 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 2J 1500000 15M 630 +10+30 н 2200000 22M 3300000 33M 5

Version

01

Page


4

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		5
		U	

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

Tabl					DEDEO						
	ITEM	PERFORMANCE									
	Rated voltage (WV)	WV (V.DC)	6.3	10	16	25	35	50	63	100	
4.1		SV (V.DC)	8	13	20	32	44	63	79	125	
7.1	Surge voltage (SV)										
4.2	Nominal capacitance (Tolerance)	<condition> Measuring F Measuring V Measuring T <criteria> Shall be with</criteria></condition>	requency oltage emperat	: N ure : 20	$0 \text{Hz} \pm 12$ ot more to $0 \pm 2^{\circ} \text{C}$ apacitance	han 0.5V					
4.3	Leakage current	<condition> Connecting t minutes, and <criteria> Refer to Tabl</criteria></condition>	he capao then, me		-		sistor (1	$k\Omega \pm 10$)Ω) in s	eries for 2	
4.4	tan δ	See 4.2, Norr	<condition> See 4.2, Norm Capacitance, for measuring frequency, voltage and temperature. <criteria> Refer to Table 1</criteria></condition>								
4.5	Terminal strength	0.5r	ength of capacitor rength of pacitor, 2~3 seco er of lea nm and l	, applied f Termina applied f nds, and d wire ess	force to als. Force to b then ber Tens	ent the tent it for 9 ile force (kgf) 5(0.51)	erminal (1 0° to its	l~4 mm t original j Bending (kj 2.5 (from the position v g force N gf) 0.25)	rubber) for	
		<criteri< td=""><td></td><td></td><td>1</td><td>0 (1.0) und, no b</td><td>reakage</td><td>X</td><td>ness at the</td><td>e terminal.</td></criteri<>			1	0 (1.0) und, no b	reakage	X	ness at the	e terminal.	

Version	01	rage	6
		•	

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

SAMXON

		<condition></condition>			~				
		STEP	Testing Tem				Time		
		1	20 =			ime to reac			
		2	-40(-25	<i></i>		ime to reac			
		3	20	±2	Т	ime to reac	h thermal	equilibr	ium
		4	105	± 2	Т	ime to reac	h thermal	equilibr	rium
	Temperature	5	20	± 2	Т	ime to reac	h thermal	equilibr	ium
	characteristi	<criteria></criteria>							
4.6	cs		shall be within t						
			eakage current	measured	shall 1	not more th	nan 8 time	es of its	specifi
		value							
			p 5, tan δ shall b						
			C, impedance (Z					1	
			ig Voltage (V)	6.3	10	16	25	35	50
			5°C/Z+20°C	2	2	2	2	2	2
		Capacita	nce, tan δ , and	impedance	e shall	be measure	ed at 120F	Iz.	
		<condition></condition>							
			ling to IEC60384	4-4No.4.13	3 meth	ods, The ca	apacitor is	stored a	nt a
		at a ten	nperature of 105	$^{\circ}C \pm 2$ wit	th DC	bias voltage	e plus the	rated rip	ple curr
	Load	for Tal	ole1. (The sum o	of DC and	ripple	peak volta	ge shall n	ot excee	d the ra
		working	g voltage) Then	working voltage) Then the product should be tested after 16 hours recoveri					
		time at atmospheric conditions.							
	Load		-						
4.7	Load life	The res	sult should meet			ble:			
4.7		The res <crite< b=""></crite<>	sult should meet	the follow	ving tal				
4.7	life	The res <crite< b=""> The cha</crite<>	ult should meet ria> aracteristic shall	the follow meet the f	ving tal	ing requirer			
4.7	life	The res <crite< b=""> The cha Leaka</crite<>	ult should meet ria> aracteristic shall ge current	the follow meet the f Value in	ving tal followi n 4.3 s	ing requiren hall be satis	sfied		
4.7	life	The res <crite< b=""> The cha Leaka Capac</crite<>	ult should meet ria> aracteristic shall	the follow meet the f Value in Within	$\frac{1}{10000000000000000000000000000000000$	ing requiren hall be satis 6 of initial	sfied value(6.3,	.10V:≤:	±30%)
4.7	life	The res <crite< b=""> The cha Leaka</crite<>	ult should meet ria> aracteristic shall ge current	the follow meet the f Value in Within Not more	following tal following tal the following table in the following table for th	ing requiren hall be satis 6 of initial n 200% of t	sfied value(6.3, he specific	.10V:≤: ed value	±30%)
4.7	life	The res Crite The cha Leaka Capac tan δ	ult should meet ria> aracteristic shall ge current	the follow meet the f Value in Within Not more	following tal following tal the following table in the following table for th	ing requiren hall be satis 6 of initial	sfied value(6.3, he specific	.10V:≤: ed value	±30%)
4.7	life	The res <crite The cha Leaka Capac tan δ Appea <condition></condition></crite 	ault should meet ria> aracteristic shall age current citance Change arance	the follow meet the f Value in Within Not mon There s	following tal following 4.3 s $\pm 25\%$ re than shall be	ing requirer hall be satis 6 of initial 1 200% of t e no leakag	sfied value(6.3, he specific e of electr	10V:≤: ed value rolyte.	± 30%)
4.7	life	The res <crite: The cha Leaka Capac tan δ Appea <condition> The capac</condition></crite: 	aracteristic shall aracteristic shall age current citance Change arance	the follow meet the f Value in Within Not mon There s tored with	following tal following 4.3 s $\pm 25\%$ re than shall be	ing requirer hall be satis 6 of initial 1 200% of t e no leakag	sfied value(6.3, he specific e of electr	10V:≤: ed value rolyte.	± 30%)
4.7	life	The res <Crite The cha Leaka Capac tan δ Appea <Condition> The capa $2^{\circ}C$ for Σ	aracteristic shall ge current citance Change arance arance citors are then s 1000+48/0 hours	the follow meet the f Value in Within Not mon There s tored with S.	Fing tal following tal $\pm 25\%$ re than shall be no vo	ing requirent hall be satis of initial 200% of the e no leakage ltage applie	sfied value(6.3, he specific e of electr ed at a ter	,10V:≤: ed value rolyte. mperatur	± 30%) e of 105
4.7	life test	The res< CriteThe charLeakaCapacetan δAppea< Condition>The capa2°C for 1Followin	arance arance arance arance arance arance arance arance arance bitance then s	the follow meet the f Value in Within Not mon There s tored with s. e capaciton	Fing tal following tal $\pm 25\%$ re than shall be no vo rs shal	ing requirer hall be satis 6 of initial 1 200% of the e no leakag ltage applie	sfied value(6.3, he specific e of electr ed at a ter ed from th	,10V:≤: ed value rolyte. mperatur	± 30%) e of 105
	life test Shelf	The res <Crite The cha Leaka Capac tan δ Appea <Condition> The capa 2° C for T Followin be allow	aracteristic shall aracteristic shall age current eitance Change arance actions are then s 1000+48/0 hours ng this period the red to stabilized	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ter	Find the following the follow	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8	sfied value(6.3, the specific e of electr ed at a ter ed from th 3 hours.	<u>10V:≤</u> ed value rolyte. nperaturn ne test ch	<u>+ 30%)</u> e of 105 amber a
4.7	life test Shelf life	The res <Crite: The cha Leaka Capace tan δ Appea <Condition> The capa 2° C for 1 Followin be allow Next the	aracteristic shall aracteristic shall ge current sitance Change arance actions are then s 1000+48/0 hours ng this period the red to stabilized ary shall be connected	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ten ected to a	re than $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10$	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8 limiting res	sfied value(6.3, the specific e of electr ed at a ter ed from th b hours. sistor(1k \pm	10V:≤: ed value rolyte. mperature te test ch ± 100 Ω)	$\pm 30\%$) e of 105 amber a with D
	life test Shelf	The res <Crite The cha Leaka Capace tan δ Appea <Condition> The capa 2° C for 1 Followin be allow Next the rated vo	arance arance arance arance arance arance arance arance arance arance bit of the second arance arance arance bit of the second arance arance bit of the second arance arance bit of the second arance arance bit of the second arance bit of the second bit of the	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ten ected to a r 30min. A	Fing tal following tal $\pm 25\%$ re than shall be no vo rs shal mpera- series after w	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8 limiting res	sfied value(6.3, the specific e of electr ed at a ter ed from th b hours. sistor(1k \pm	10V:≤: ed value rolyte. mperature te test ch ± 100 Ω)	$\pm 30\%$) e of 105 amber a with D
	life test Shelf life	The res <Crite The cha Leaka Capace tan δ Appea <Condition> The capa 2° C for 1 Followin be allow Next the rated vo	aracteristic shall aracteristic shall ge current sitance Change arance actions are then s 1000+48/0 hours ng this period the red to stabilized ary shall be connected	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ten ected to a r 30min. A	Fing tal following tal $\pm 25\%$ re than shall be no vo rs shal mpera- series after w	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8 limiting res	sfied value(6.3, the specific e of electr ed at a ter ed from th b hours. sistor(1k \pm	10V:≤: ed value rolyte. mperature te test ch ± 100 Ω)	$\pm 30\%$) e of 105 amber a with D
	life test Shelf life	The res <Crite The cha Leaka Capace tan δ Appea <Condition> The capa 2° C for 1 Followin be allow Next the rated vo	arance arance arance arance arance arance arance arance arance arance bit of the second arance arance arance bit of the second arance arance bit of the second arance arance bit of the second arance arance bit of the second arance bit of the second bit of the	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ten ected to a r 30min. A	Fing tal following tal $\pm 25\%$ re than shall be no vo rs shal mpera- series after w	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8 limiting res	sfied value(6.3, the specific e of electr ed at a ter ed from th b hours. sistor(1k \pm	10V:≤: ed value rolyte. mperature te test ch ± 100 Ω)	$\pm 30\%$) e of 105 amber a with D
	life test Shelf life	The res <Crite The cha Leaka Capace tan δ Appea <Condition> The capa 2° C for 1 Followin be allow Next the rated vo	arance arance arance arance arance arance arance arance arance arance bit of the second arance arance arance bit of the second arance arance bit of the second arance arance bit of the second arance arance bit of the second arance bit of the second bit of the	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ten ected to a r 30min. A	Fing tal following tal $\pm 25\%$ re than shall be no vo rs shal mpera- series after w	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8 limiting res	sfied value(6.3, the specific e of electr ed at a ter ed from th b hours. sistor(1k \pm	10V:≤: ed value rolyte. mperature te test ch ± 100 Ω)	$\pm 30\%$) e of 105 amber a with D
	life test Shelf life	The res <Crite The cha Leaka Capace tan δ Appea <Condition> The capa 2° C for 1 Followin be allow Next the rated vo	arance arance arance arance arance arance arance arance arance arance bit of the second arance arance arance bit of the second arance arance bit of the second arance arance bit of the second arance arance bit of the second arance bit of the second bit of the	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ten ected to a r 30min. A	Fing tal following tal $\pm 25\%$ re than shall be no vo rs shal mpera- series after w	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8 limiting res	sfied value(6.3, the specific e of electr ed at a ter ed from th b hours. sistor(1k \pm	10V:≤: ed value rolyte. mperature te test ch ± 100 Ω)	$\pm 30\%$) e of 105 amber a with D
	life test Shelf life	The res <Crite The cha Leaka Capace tan δ Appea <Condition> The capa 2° C for 1 Followin be allow Next the rated vo	arance arance arance arance arance arance arance arance arance arance bit of the second arance arance arance bit of the second arance arance bit of the second arance arance bit of the second arance arance bit of the second arance bit of the second bit of the	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ten ected to a r 30min. A	Fing tal following tal $\pm 25\%$ re than shall be no vo rs shal mpera- series after w	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8 limiting res	sfied value(6.3, the specific e of electr ed at a ter ed from th b hours. sistor(1k \pm	10V:≤: ed value rolyte. mperature te test ch ± 100 Ω)	$\pm 30\%$) e of 105 amber a with D
	life test Shelf life	The res <Crite The cha Leaka Capace tan δ Appea <Condition> The capa 2° C for 1 Followin be allow Next the rated vo	arance arance arance arance arance arance arance arance arance arance bit of the second arance arance arance bit of the second arance arance bit of the second arance arance bit of the second arance arance bit of the second arance bit of the second bit of the	the follow meet the f Value in Within Not mon There s tored with s. e capaciton at room ten ected to a r 30min. A	Fing tal following tal $\pm 25\%$ re than shall be no vo rs shal mpera- series after w	ing requirer hall be satis 6 of initial 1 200% of t e no leakag ltage applie l be remove ture for 4~8 limiting res	sfied value(6.3, the specific e of electr ed at a ter ed from th b hours. sistor(1k \pm	10V:≤: ed value rolyte. mperature te test ch ± 100 Ω)	$\pm 30\%$) e of 105 amber a with D

Version 01 Page 7

		<criteria></criteria>			
		The characteristic shall r	neet the following requirements.		
	G1 10	Leakage current	Value in 4.3 shall be satisfied		
10	Shelf life test	Capacitance Change	Within $\pm 25\%$ of initial value(6.3,10V: $\leq \pm 30\%$)		
4.8		tan δ	Not more than 200% of the specified value.		
	lest	Appearance	There shall be no leakage of electrolyte.		
		Remark: If the capacitors are	stored more than 1 year, the leakage current may		
		increase. Please apply voltag	e through about 1 k Ω resistor, if necessary.		
4.9	Surge test	The capacitor shall be submit followed discharge of 5 min The test temperature shall b C_R :Nominal Capacitance (<criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	 be 15~35°C. μ F) Not more than the specified value. Within ± 15% of initial value. Not more than the specified value. There shall be no leakage of electrolyte. 		
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitud Sweep rate Mounting method: The capacitor with diameter in place with a bracket. 4mm or les	e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30°		

Version	01	Page	8

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

r								
		<condition></condition>	4 - J J 41 C - 11					
		The capacitor shall be tes	•	conditions:				
		Soldering temperature	: 245±3°C					
	Solderability	Dipping depth	: 2mm : 25±2.5mm					
4.11	test	Dipping speed		V/S				
	test	Dipping time <criteria></criteria>	: 3±0.5s					
			A minimur	n of 95% of the surface being				
		Coating quality	immersed	in or 7570 of the surface being				
			minerbed					
		<condition></condition>						
			citor shall be immersed i					
		260 ± 5 °C for 10 ± 1 sec	conds or $400 \pm 10^{\circ}$ C for 3	$^{+1}_{-0}$ seconds to 1.5~2.0mm from the				
		body of capacitor.						
	Resistance to			al temperature and normal humidity				
4.12	solder heat	for 1~2 hours before r	neasurement.					
	test	< <u>Criteria></u>	Net mens then t					
		Leakage current		he specified value.				
		Capacitance Change						
		tan δ	Not more than t	he specified value.				
		Appearance	There shall be n	o leakage of electrolyte.				
		<condition></condition>						
				4.7methods, capacitor shall be				
		placed in an oven, the con						
			emperature	Time				
		(1)+20°C		≤ 3 Minutes				
	Change of	(2)Rated low temper	ature (-40°C) (-25°C)	30 ± 2 Minutes				
4.13	temperature	(3)Rated high tempe	rature (+105 $^{\circ}$ C)	30 ± 2 Minutes				
	test	(1) to (3)=1 cycle, to	tal 5 cycle					
		<criteria></criteria>						
		The characteristic shall m						
		Leakage current	Not more than the s	*				
		tan δ	Not more than the s	*				
		Appearance	There shall be no le	eakage of electrolyte.				
		<condition></condition>						
		Humidity Test:						
		e e	According to IEC60384-4No.4.12 methods, capacitor shall be exposed					
		hours in an atmosphere of 90~95% R H .at 40 ± 2 °C, the characteristic change shall						
		meet the following requir	rement.					
		<criteria> Leakage current</criteria>	Not more than the spe	cified value				
4.14	Damp heat		Within $\pm 20\%$ of initia					
	test	Capacitance Change $\tan \delta$						
		$\tan \delta$	Not more than 120% of There shall be no look	-				
		Appearance	There shall be no leak					
i								

Version	01		Page	9
---------	----	--	------	---

ELECTROLYTIC CAPACITOR SPECIFICATION SK SERIES

4.15	Vent test	22.4 or less	ith its pola able is appl rrent (A) 1 10 dangerous	rity reversed lied.	l to a DC p	ower source.	Then a
4.16	Maximum permissible (ripple current)	<Condition>The maximum permissible ri at 120Hz and can be applied Table-1The combined value of D.C rated voltage and shall not rFrequency Multipliers:CoefficientFreq. (Hz) Cap. (µ F)33~270 330~680 820~1800 2200~8200	l at maxim voltage an	um operatin	g temperati	ıre	ceed the

Version 01	Page 10
------------	---------

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances					
	Cadmium and cadmium compounds					
Heavy metals	Lead and lead compounds					
Treavy metals	Mercury and mercury compounds					
	Hexavalent chromium compounds					
	Polychlorinated biphenyls (PCB)					
Chloinated	Polychlorinated naphthalenes (PCN)					
organic	Polychlorinated terphenyls (PCT)					
compounds	Short-chain chlorinated paraffins(SCCP)					
	Other chlorinated organic compounds					
	Polybrominated biphenyls (PBB)					
Brominated	Polybrominated diphenylethers(PBDE) (including					
organic	decabromodiphenyl ether[DecaBDE])					
compounds	Other brominated organic compounds					
Tributyltin comp	ounds(TBT)					
Triphenyltin con	npounds(TPT)					
Asbestos						
Specific azo com	apounds					
Formaldehyde						
Beryllium oxide						
Beryllium copp	er					
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)					
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)					
Perfluorooctane	sulfonates (PFOS)					
Specific Benzotr	iazole					

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

φ6.3~φ16mm:2mm minimum, φ18~φ35mm:3mm minimum, φ40mm or greater:5mm minimum.

- (5) Clearance for Seal Mounted Pressure Relief Vents
- A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

Version 01	Page	12
------------	------	----

SAMXON

	Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite. Circuit Board patterns Under the Capacitor
	Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short. Screw Terminal Capacitor Mounting
(0)	Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
1.6	Electrical Isolation of the Capacitor Completely isolate the capacitor as follows.
	Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7	The Product endurance should take the sample as the standard.
1.8	If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9	Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
	CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.
20	
2.1	apacitor Handling Techniques Considerations Before Using
	Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged
(3)	with a resistor with a value of about $1k\Omega$. Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying
	rated voltage in series with a resistor of approximately $1k\Omega$. If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can
(3)	result.
	Capacitor Insertion Verify the correct capacitance and rated voltage of the capacitor.
(2)	Verify the correct polarity of the capacitor before inserting. Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
(4)	Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.
	For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.
(1) ((2) I (3) I	Manual Soldering Dbserve temperature and time soldering specifications or do not exceed temperatures of 400 $^{\circ}$ C for 3 seconds or less. I lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal. If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads. Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.
(1) I (2) C	Flow Soldering Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. Deserve proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits. Do not allow other parts or components to touch the capacitor during soldering.
2.5	Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version	01		Page	13
---------	----	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result. Acetone
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01 Page 15
